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The development of a modern technology, operated under complex conditions of interacting 
physical factors, has stimulated the creation of a theory of coupled (e.g., electromagnetic) 
fields in elastic bodies, particularly composites. In the mechanics of microinhomogeneous 
media with a random structure highly effective methods have been developed for calculating 
the linear effective properties of a medium in various physicomechanical fields from the 
properties of the components of the medium and a comparison with experiments has been made 
[1-6]. As a rule, an estimate is made of the average values of various fields in components 
that depend linearly on the random fields in the medium; this substantially simplifies the 
solution of the indicated classical problem. The prediction of the strength properties of a 
medium is complicated in a fundamental manner by the essentially nonlinear dependence of the 
strength laws on the local field strength. For example, the simplest method of estimating 
the effective parameters of the mechanical strength of composites is the rule of mixtures [7], 
which is invariant under the form and orientation of the inclusions. More exact methods are 
based on calculations of the average field strengths in composites, but as shown below a 
study of only the first moments of the field strength [6] in the components leads to qualita- 
tive errors in the estimate of the effective strength parameters of composites. 

In this paper we propose a method of constructing the strength surface of a composite 
in static coupled physicomechanical fields with allowance for the coupling of the fields, 
arbitrary anisotropy of the physicomechanical properties, and shape and orientation of the 
filler inclusions; the methods of estimating the one-point first [i] and second [2] moments 
of the coupled fields in the components of the medium are used. 

i. General Relations. We consider a macroregion z with a characteristic function Z at 
each point of which a local equation 

~ (x) = L~(x )#(x ) ,  VO~(~) ~ 0 (~, ~ = t . . . . .  N),  ( 1 . 1 )  

associates the tensors of the thermodynamic forces s~ and fluxes o~; tensors of the mechanical 
stresses, electromagnetic field induction, heat flow, mass flow, etc., can be used as oa; E~ 
can denote strain tensors, field tensors, etc. The fields s$ are assumed to be potential 
fields (EB = Vu$), V is the operator of the symmetrized gradient and the gradient when acting 
on a tensor of the first and zero rank, respectively. The tensors of the physicomechanical 
properties L~ of the second, third, or fourth ranks are independent of su (u = 1 ..... ,N) and 
satisfy the Onsager conditions and the energy limitations. 

We assume that at every point of the medium there is a tensor-polynomial strength crite- 
rion, which is invariant under transformations of the coordinate system, 

( ~ '~  (x) o ~ (x) + n ~ (x) o ~ (~) | o ~ (x)) = 1, ( 1 . 2 )  

and is analogous to the Malmeister strength criterion [8]; tensors fiz~ and R 2a are of the same 
ranks as tensors o ~ and o~ | o=(| is the sign for the tensor product). 

Suppose that the region z consists of a matrix v 0 with characteristic function V with 
homogeneous coefficients L$ ~, N~ ~, H~ = and the random set X = (Vk, Zk, m k) of ellipsoidal in- 
clusions with characteristic functions V k, and centers Xk, forming a Poisson set, semiaxes 

2 3 a~ (a~a~a~), a set of Euler angles ~k and homogeneous coefficients L~(x)=L~-~L~(x)~ 

L~ ~ + L~ ~(h), n ~g (x) = ~ a  + H~u ( x ) - -  H~a + fl~gth) H2~ (x) = H~ ~ + H~ a(a) (x ~ v~). 

Along with the tensor form we also use the equivalent matrix notation of with a standard 

transformation rule. We introduce the vectors o~(~), g~__--(~=), u----(u=), N~=(N~=), n~=(~]=) 

Moscow. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 4, pp. 124- 
130, July-August, 1992. Original article submitted June 5, 1990; revision submitted March 14, 
1991. 

0021-8944/92/3304-0589512.50 �9 1992 Plenum Publishing Corporation 589 



and the matrices L 0 = (L$~), L 1 = (L~), ~ = (~0), l]~ = (|[i)" All of the random fields con- 
sidered here are assumed to be ergodic, statistically uniform random fields and the aver- 
aging over the ensemble X can thus be replaced by averaging over the macrovolume. We intro- 
duce the notation 

<(.)> =6)  -l~(.)z(~')dx, <(-)>~ =(%)-lf(.)V~(x)dx, k=O, t . . . .  

He re  and b e l o w  t h e  i n t e g r a t i o n  i s  c a r r i e d  o u t  o v e r  t h e  e n t i r e  r e g i o n  o f  z ;  t h e  b a r  a b o v e  i t  
i n d i c a t e s  i t s  m e a s u r e ,  ~ = mes z .  

To f i n d  t h e  t e n s o r  L* o f  e f f e c t i v e  p r o p e r t i e s  o f  t h e  e q u a t i o n  o f  t h e  m a c r o s t a t e  <o> = 
L*<s> we a v e r a g e  t h e  l o c a l  e q u a t i o n s  o f  s t a t e  ( 1 . 1 )  o v e r  t h e  m a c r o v o l u m e ,  w h e r e u p o n  

L* = L 0 + R*, ( 1 . 3 )  

where R* is determined by the mean of the polarization tensor <VLIe> ~ R*<E>, V = EV k (sum- 
mation over k = i, 2,...). 

An alternative, although equivalent, method can be proposed for introducing the effec- 
tive tensor L* on the basis of the energy considerations: 

<e(x)o(x)> = (e>L*(e>. ( 1 . 4 )  

The e q u i v a l e n c e  s t e m s  f r o m  t h e  g e n e r a l  c o n d i t i o n  ( a n a l o g o u s  t o  t h e  H i l l  c o n d i t i o n  [ 1 0 ] )  

( e ( x ) a ( ~  > - <e) (o>, ( 1 . 5 )  

which is not related to any specific equation of state and was obtained on the basis of only 
the equilibrium equation Vo = 0 and the Cauchy equation E = VuC: 

<E(X)~(~)> ~ (Z)--I; <E(x)~(x)>dx=(~)-l<;V[M(x)G(x)]dx> =(~)--1~ <~(X)~n(X)> Us. 

Here integration is carried out over the region z and its boundary 3z with the normal n; 
o n = an. Assuming that the boundary condition are determined in terms of the thermodynamic 
fluxes a~(x)= (o(~>n(x), x~ 0z, we obtain 

<~ (x) o (~)> = (~)-~ ~ <u (x) ~ (x)> ds <~ (x)> = 6) -1 ~ <~ (x)> ds <a (~)>, 

and  f r o m  t h i s  we h a v e  ( 1 . 5 ) ,  w h i c h  c a n  be  p r o v e n  f o r  b o u n d a r y  c o n d i t i o n s  i n  p o t e n t i a l s  u .  

Fo r  a f i x e d  u n i f o r m  f i e l d  <E> we v a r y  t h e  l o c a l  p r o p e r t y  t e n s o r  L ( x )  § L ( x )  + 5 L ( x ) ,  
w h e r e u p o n  f r o m  ( 1 . 5 )  a t  a f i x e d  <E> we f i n d  

(SL* (e)) (e) = ((SLe)e + 26e(L~) >. ( i .  6)  

We a s sume  t h a t  t h e  p r o p e r t y  t e n s o r s  and  t h e i r  v a r i a t i o n  a r e  u n i f o r m  w i t h i n  t h e  l i m i t s  o f  t h e  
c o m p o n e n t  v k (k  = 0 , 1  . . . .  ) :  

L (x) = ~ L(~)Vh(x), 6L (x) = ~_, 8L(k)V~ (x). 
h~0 h=O 

Then i n  Eq. (1.6) t r a n s f o r m e d  by  t h e  scheme o f  [2 ]  t h e  t e n s o r  6L can  be t a k e n  o u t  i n  f r o n t  
o f  t h e  s i g n  o f  a v e r a g i n g  o v e r  t h e  v o l u m e  v k o f  t h e  c o m p o n e n t ,  w h i c h  makes  i t  p o s s i b l e  t o  
recast (1.6) as 

<e | e>k = v~lOL*/OL(h) (<e> | <e>) (k -- 0, 1 . . . .  ), ( 1 . 7 )  

i . e . ,  t h e  t e n s o r s  o f  t h e  s e c o n d  moments  o f  t h e  f i e l d  s t r e n g t h  (e | e>~, a v e r a g e d  o v e r  t h e  
v o l u m e  o f  c o m p o n e n t  k ,  a r e  d e t e r m i n e d  u n i q u e l y  f r o m  t h e  f u n c t i o n a l  d e p e n d e n c e  L* = L * ( L ( k ) ) .  
W r i t i n g  ( 1 . 4 )  i n  t e r m s  o f  t h e  t h e r m o d y n a m i c  f l u x e s  o :  (M*<o>)<o> = <(Mo)o>,  we h a v e  an e x -  
p r e s s i o n  f o r  t h e  s e c o n d  moment o f  t h e  t e n s o r  o f  t h e r m o d y n a m i c  f l u x e s ,  a n a l o g o u s  t o  ( 1 . 7 ) :  

<o | o>~ = v~OM*/OM (h) (<e> | <e>). ( 1 . 8 )  

H e r e  we h a v e  i n t r o d u c e d  t h e  r e c i p r o c a l  t e n s o r s  M(k) ~ ( L ( k ) )  - 1 ,  M e ~ (L*)  - 1 .  

We go on to evaluate tensor R* (1.3). To abbreviate the manipulations we assume that 
L 0 is a cellular-diagonal matrix L 0 ~ diag [L~ l ..... LoNN], i.e., the effects of the coupling 
of the fluxes are not taken into account in the matrix. In the general case of matrix L 0 
the transition from it to the cellular-diagonal matrix by introducing modified variables was 
considered in [ii, 12]. Then Eq. (i.i) can be rewritten as 

VLoV u = _ V L l V U .  (1.9) 
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Since analytical representations or numerical methods for constructing the fundamental solu- 
tion G ~ exist for most uncoupled physicomechanical fields described by the equations VL0 ~ • 
Vu ~ = 0, we determine a cellular-diagonal block matrix of the fundamental solutions G = 
(G~), G~$ = 0 for a ~ 8. Then with the assumptions described in [i] Eq. (1.9) reduces to 
the integral 

a(x) = <e> - S U(x  - -  y) [L~(y) e(y) V(y) --  <L~eV>ldy ( 1 . 1 0 )  

(U = VVG). The convergence of the integral in (i.i0) was studied in [I]. We evaluate R* 
from (i.i0) within the framework of the multiparticle effective field method (EMF). 

We introduce ~(umlx, .... , xn), arbitrary densities of the probability of finding the m-th 
inclusion in region v m for fixed inclusions vl,...,v n with centers xl,...,x n. We average 
(I.i0) on the set X for fixed values of vl; v I, v 2, etc., by means of various densities of 
the distribution ~(vmlxl, ..., x~). We obtain an infinite system of coupled equations, which we 
average of the volume of the i-th inclusion (i = 1 ..... n) and have 

_ v vF~ U (x - v) V~ (z) Vj (y) • < ~ l x ,  . . . . .  z~>i , . .  
j= l  

x <L !(y) e(y) ly; x~ . . . . .  x,~>dydx = <e> + vT'  ~ S U ( x - -  y) V~(x)X 

• [<V (y) L~ (y) e (y) ] y; x, . . . . .  xn> - -  <L,eV>] dy dx, ( 1 .11  ) 

w h e r e  < ( . ) ] y ;  x 1 . . . . .  Xn> i s  t h e  c o n d i t i o n  f o r  a v e r a g i n g  o v e r  t h e  e n s e m b l e  X when y ,  x 1 . . . . .  x n 
a r e  i n c l u s i o n s  and  y ~ x z , . . . , x  n .  

We d e n o t e  t h e  r i g h t  s i d e s  o f  t h e  e q u a t i o n s  b y  < ~ ( x ) l , . . . , n > i ,  a n d  ~ i  = s ( x i )  i s  t h e  
f i e l d  i n  w h i c h  t h e  i - t h  i n c l u s i o n  i s  l o c a t e d ,  t h e n  ( j  = 1 . . . . .  n ) .  

(~) - -  ~(~)~ ..... ~ + :~  j y (z - y) y j  (,~) L~ (y) ~ (~) @ .  ( 1. 12 ) 
j~i 

2. The Effective Field Method. For the approximation solution of Eqs. (i. Ii), (1.12) 
we adopt the EMF hypothesis about the uniformity of the field ~(x i) and closure at suffi- 
ciently large n, 

(<7(xh  . . . . .  j . . . .  +~h  = <~(xh . . . . . .  >i, x ~  v~ (~ = i . . . . .  n) [~ j ) .  

For an ellipsoidal inclusion the field s(x) inside the inclusion is also uniform and 

<e(x)>~ = A~<7~(x)>, A~ = (I + P~L~) -~, ( 2 . 1 )  

where P ~ = ( P ? ~ ) ~  (~, ~ = ~  . . . . .  N), P~=--]U=~(~-- V) Y~ (V) @ (x~,~) are constant  te~,sors 

that do not depend on the physicomechanical properties and size (but not shape) of the el- 
lipsoid v i. The tensors P~ are expressed in terms of the known Eshelby tensor in the theory 
of elasticity [9] or its analog in transport problems [5]. 

For n inclusions in a field ~(x)~, with allowance for (i.12) (2.1) and the EMF 
hypothesis we obtain (j = i ..... n, j ~ l)''n 

• (~ (Y) I x~, . . . ,  x~>~ dx dy = <~'(x h ... . . .  >, R~ = L?)A~,~. ( 2 . 2 )  

To solve (2.2) by linear algebra methods we form the matrix T -~ with elements Tm~ (m, k = 
1 .... ,n) as the submatrix 

T7~ = l ~ , ~  + (~,.~ - -  ~) BInS (x~ - -  x~.), 

where 

(X) i Xl . . . . .  Xn>i = ~ 1  ~ Tij[~j <~(X)l ....... >j. ( 2 . 3  ) 
j=l 

W i t h i n  t h e  f r a m e w o r k  o f  t h e  EMF w i t h  t h e  a i d  o f  s o l u t i o n s  ( 2 . 2 ) ,  ( 2 . 3 )  we o b t a i n  f r o m  ( 1 . 1 1 )  
a c l o s e d  s y s t e m  o f  i n t e g r a l  e q u a t i o n s  i n  t h e  f i e l d s  < ~ ( x )  1 . . . .  , j > i  (J = 1,  . . . .  n ,  i = 1 . . . . .  j ) :  
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J+1 1 
<E"(/)I ..... j>i : <8> -~ S S (X i - -  Xq) q) (U/I s . . . . .  Zj) E Tql~l <8"(X)l ..... j+l>/--  S, (x, - -  xq) <R~'~> dxq, 

~=I (2.4) 

~(/)1 . . . . .  ~>~ = <~> + ~ S(x~ - x~)~ (~ Iz~ . . . . .  x~_O E Tq~R, (2(x~ ..... ~>~ --  S~ (~ -- x~) <~,> d ~  

( S i ( x i -  Xq)= "v.~ S U ( x - - x q ) V i ( x ) d x ,  zq ~ v O. The s o l u t i o n  o f  ( 2 . 4 )  can  be e f f e c t e d  n u m e r i c a l l y  by 

e s t i m a t i n g  <~(x)  1 . . . .  , n> i  ( i  = 1 . . . . .  n)  f rom t h e  l a s t  o f  n rows o f  ( 2 . 4 )  by t h e  method o f  
s u c c e s s i v e  a p p r o x i m a t i o n s  f o r  a l l  p o s s i b l e  p o s i t i o n s  o f  v ~ , . . . , v  n.  We s u b s t i t u t e  t h e  v a l u e  
o b t a i n e d  f o r  < ~ ( x ) l ,  . . . .  n> i  ( i  = l ,  . . . .  n) i n t o  t h e  r i g h t  s i d e  o f  t h e  (n - 1 ) - t h  row o f  ( 2 . 4 ) ,  

etc., until we get the estimate <~(xi) h~- <e(x0>------Di(e> which makes it possible to determine 

R*=~ <niR~Di> and the tensor of effective properties (1.3) (n i = <Vi>/v i is the calculated 
i=l 

concentration of inclusions vi). 

The analytical solution of the problem can be found in the two-particle approximation and 
the assumption 

(7(xh2h = ([(x0> -- const (g =- l ,  2). ( 2 . 5 )  

Then f rom ( 2 . 3 ) ,  ( 2 . 5 ) ,  and t h e  f i r s t  e q u a t i o n  o f  ( 2 . 4 )  we o b t a i n  
Nc 

<~(Xi)> : </~i>~ I E Y t i ( y - 1 ) i i  <Rj>~ <e>, (2.6) 
j=l 

where the tensor y-1 takes the binary interaction of inclusions into account and has the 
reciprocal tensor Y, written in matrix form as the submatrices 

r~j = 6~ @ -  <R~>~ ~ <s (x~ - xj)> o , ~ ( , ~ l x ~ ;  xodx~) + 

-~ (6~j - -  t) <R~>~ y {<S (xi --  x~))o)Ti~ (ui I xi; x~) - -  <S~ (x~ - -  xi)>~ni} V (xi; ( 2 .7  ) 

x 0 dxi -- <R~)~ <Pi>o)n~, V (xi; x 0 _~ V (xi) -- V~ (x~). 

In (2.6) and (2.7) for brevity of manipulations we have introduced the operator for averaging 
over possible orientations of the inclusions vi(<(.)>m). 

Equation (2.6) makes it possible to find expressions for the tensors of effective proper- 
ties (1.3) of the concentrators B~ of field o in the component ~ ((~)~ = B*<o>, <o~>~=B*~V<c~>, 

= 0, 1 .... ,Nc; ~, u = 1 ..... N) 
Nc 

L* = L 0 q- E ni (Y-~)~ <R~>~, " 
i , j=l  

- '  . . . . .  * - L ~ c,B / (2.8) B * = L ( O A ~ , n ~ ( Y  )~<R~>~M* (~ l ,  Y~), B o = c o  1 1- -  , 
]=1 

Ccr ~ <V~>. 

3. Effective Strength Surface. By analogy with the problems of mechanical strength, we 
use the familiar method of constructing the effective strength surface H*(<o>) [7] by substi- 
tuting the mean values of the tensors into the components 

H*(<a)) max~ i~ * 2~ * = {n~ ~<~>+u~ (B~ | | (3.1) 
i 

Equations (3.1) give physically contradictory results. Indeed, for an isotropic medium 
the mechanical strength properties whose isotropic matrix satisfy the Mises criterion (N = 1), 
we obtain <aij> 0 - <Okk>Sij/3 = 0 under a hydrostatic load with any method of esti- 
mating B~. This means that a porous material has an infinite strength under hydrostatic 
compression and this is a variance from experiment. 

It is more exact to choose the effective strength surface in the form stemming from (1.2), 
(i.8) (i = 0, i ..... Nc): 

H* (<o>) = max ~ {H~B~ ~ <o~> + ~IH~=aM*/OM (0 (<~> | <o>)I = I. (3.2) 

Here the tensors B *~$ and M* are calculated from Eqs. (2.8). Thus, with the assumptions made 
the problem of constructing an effective strength surface is equivalent to the problem of 
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evaluating the effective modulus. The mean values of the one-point first and second moments 
of the field o in the components of the medium are used in Eqs. (3.2). 

4. Examples. We consider the problem of calculating the effective mechanical strength 
of the components (N = i). A specific expression for the modulus L* of a porous material was 
obtained earlier [4] by taking the first terms of the series in the representation of the 
binary-interaction matrix Tij into account. In particular, for an undistorted matrix with 

(o) (0~ spherical pores of one size in the notation of [i] (tl (~ 2(L~jij--L~jj/3)/5 , c-----<F>) we have 

M* = ((F(~ [2 - -  29c/12 ]'~, 2(~(0)) -~ [i  + 5c {3 - -  35c/8 }-~]). ( 4 . 1 )  

Inclusion of the compressibility of the matrix in the parameter ranges 0.i ~c~ 0.5, 
0.3 ~v0< 0.5 (v 0 is Poisson's ratio) results in a refinement of M* is no more than 5% in 
comparison with Eq. (4.1), which can be disregarded. Substituting (4.1) into (3.2) on the 
assumption that the strength properties satisfy the Mises strength criterion (sijsij = k~, 
sij = oij - Okk6ij/3), we obtain an expression for the strength surface of the medium, written 
in terms of the invariants of the macrostress tensor: 

12 + b*~ = (k*)L I~ = <~.>, I~ ~ <si~> <s~>, 

b* = c(2  - -  35c / t 2 ) [ ( t  + 5c/24) (1 - -  29c/24)] -~, ( 4 . 2 )  

(k*y  = k~ (1 - -  c) ( i  - -  35c/2~) [i + 5~24]  -~.  

We can show that for any pore concentration d the effective strength parameters b* and k* 
lie between the corresponding parameters of the known criteria of Garson [13] and Tverdgard 
[14]. 

When the pores are replaced by infinitely strong hard spherical inclusions with ideal 
adhesion to the matrix, we find the equation of the strength surface in the form (4..2) with 
the parameters 

(k*) 2 = k~ ( l  - -  c) (i  + 9c/t  6) (i  - -  3 tc /16)  - z ,  b* = O, ( 4 . 3  ) 

i.e., the strength of a composite medium increases with the degree of filling. Relation (4.3) 
formally coincides with the effective yield stress of rigid-plastic composites [4]. 
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